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Fig. 2. Convergence behavior of upper and lower bound solutions.

where

{
1, ~=fl=j

6 ,.1 =

o, otherwise.

IV. RESULTS

Equation (21) was evaluated using an electronic computer. A
SO-Q 0.9525-cm (3/4-in) open-circuited coaxial termination with a

solid center conductor was fabricated with center- and outer-con-

ductor diameters of 0.82723 ~0.00005 and 1.90487 ~0.00005 cm

(1 cm= 0.393701 in), respectively. The measured value of capacitance

of this termination at 1000 Hz was216.4il.OfF, as compared with

the calculated lower bound of 215.0 fF. [The upper bound for this

case was217.7fF (see 2).] The number of terms carried intheexpan-
sionsfor~ and k(p, p’) were eight and ten, respectively.

Fig. 2 is a plot of the calculated value of capacitance as a function
of the number of terms carried intheexpansion of the field [see (19)]
foraten-term expansion of thekernel [see (17)] .Alsodisplayed isthe
convergence behavior of the upper bound solution.

The error bounds provided by this method make it useable for
standards work. In other methods, error bounds must be inferred

from the convergence behavior of the solution. The minimum error

bounds determinable by this method mast wait until funds become

available. In theory, of course, this limit could be reduced to zero.

Somlo [3]obtained avalueof 216.8 fFusing a40-term expansion

of the series derived by Wliinnery et al. [4]. This value lies between

the upper and lower bounds obtained here.
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Radial com~onent of transverse electric field.
Transverse ~omponent of magnetic field.
Reflection coefficient.
Amplitude of the incident wave in region I.

= ~k’–~~’ =ix~; an= dy~’–k’.

= ~k’ –T;’ =ie~’; a.’= dy.” –k’.—
=dw.

=coe/h~-wave admittance corresponding to the nth

mode in theregion Z<O.
=coc/hn’-wave admittance corresponding to the tzth
mode in the region 2>0.
Characteristic admittance.
Mode functionof thenth mode inacircular waveguide.
tith eigenvalue corresponding to the eigenfunction
%(p) (see I).
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nth eigenvalue corresponding to the eigenfunction V.
(see I).

Dielectric constant.
Polar coordinate.

Permeability.

Polar coordinate.

Mode function of the dominant mode in a coaxial line.
Mode function of the tith mode in a coaxial line.

= 2irfi f = frequency.
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On Inhomogeneously Filled Rectangular Waveguides

K. F. CASEY

Absfracf—A method is given for determining the characteristic

equations and field components of the LSE and LSM modes in
rectangular waveguides filled with a dielectric which is inhomoge-

neous in one transverse dimension. The method is exact and yields

solutions for a nearly arbitrary variation in permittivity across the

waveguide.

Propagation in waveguides which are inhomogeneously filled in

the transverse direction has been of interest for many years, because

of applications to a variety of microwave components, including

phase changers, matching transformers, and quarter-wave plates [1].
[n these applications, the inhomogeneous loading is generally ac-
complished by partially filling the guide cross section with a dielectric
slab. There has also been some attention given to the more general
problem in which the permittivity variation is continuous over one

dimension of the guide cross section [2], [3]. In this short paper, we
consider this more general situation and present a method by which
the electromagnetic fields may be determined for a nearly arbitrary

variation of permittivity across the waveguide.

Consider a rectangular waveguide formed by conducting surfaces

at x = O and x =a and y = O and y = b. The material filling the guide is

an inhomogeneous dielectric of permittivity c($) and permeability IJO.

Assuming a time dependence exp (jut), the LSE modes are obtained

from

E=vx@iz (la)

1
77= —Vxvxwz

jwpO
(lb)

where

V%+ k2(x)@ = O (2)

with kz(x) = C02WX(x). The elementary product solutions of (2) are

given by

@(%, y, 2) = f(x) Cos ~;y @z (3)

in which n=O, 1, 2, . . . , @ is the propagation constant in the axial
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direction and f(x) is a solution of

2+[’””’- (32-”’1’=0

subject to the boundary conditions f(O) =.f(a) = O.

The LSM modes are obtained from

E=.2—vxvx.m.
jtie(x)

77=vx Y?liz

where

The elementary product solutions of (6) are given by

in which n = 1, 2, 3, . . . and g(~) satisfies

d2g 1 de dg
—— , ~ ~ + [k2(*) –——
d@ (?)’ +zlg=o

subject to the boundary conditions g’(0) = g’ (a) = O.
Equations (4) and (8) may be solved via the substitutions

TX

.
x+2zg. cos2nf=

fist (32P’(X)- (3’-’1
m

p+2~kncos2n$=
()

z 261/2($) -!; [6–1(2(X) ]

7L=1 T

(4)

(5a)

(5b)

(6)

(7)

(8)

(9a)

(9b)

(9C)

(9d)

(9e)

yielding

Equation (10) is of the form of Hill’s equation [4], [5], solutio~s of

which may be readily obtained if the series of coefficients ~n~l g.

(and ~~=1 k. for the LSM fields) is absolutely convergent. The
boundary conditions imposed on u(f) and V(E) are simply

24(0) = 2J(7r/2) = o (ha)

d(o) = zJ’(7r/2) = o (llb)

when 6’(O) = d(a) = O. If ~’ #O at either wall of the guide, condition
(1 lb) will be modified somewhat.

The boundary condition equations (11 ) yield the characteristic

equations for the propagation constants of the two mode types. One
may readily show, using a theorem proved by Magnus [6] concerning

the solutions to the Hill equation, that condition (1 la) is equiva-

lent to

gn.m – g.+m
det &,m + ———— = o.

x – 4%%
(12a)

n,m-l ,2,3,

Condition (1 lb) is equivalent to

det ~ +(g.-~–lk.fi+g.+m- lt.+m)(l+sgn n sgn w)
m,?n =0.

<,x (x–/.4?z?)’) —
“m=”’’’” “““ (12h)

In (12), tin,fi=l if n=m and & -= Oifti#m: e.=lifti=O and 6.=2
if n >0; and sgn n = 1 if n>O and sgn O =0. Equations (12a) and

(12b) constitute the characteristic equations for the LSE and LSM

modes, respectively; one will note that it has not been necessary to

actually solve (4) or (8) to obtain them. Since these characteristic

equations are expressed more or less directly in terms of the Fourier

coefficients of the permittivity profile, the evaluation of the cutoff
frequencies and propagation constants is numerically straightforward.

The only condition imposed on the profile is that the series mentioned

above must be absolutely convergent.
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Fig. 1. Dielectric profiles. Solid line: c(x) of (13); broken line: equivalent constant
profile; dot–dashed line: step profile.
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Fig. 2. Dominant-mode propagation constant ap/% versus aka/r for the three
dielectric profiles shown in Fig. 1.

As a simple example, consider the calculation of the dominant
LSE-mode propagation constant in a rectangular guide filled with a
medium of permittivity

9

(

7r.t 1 3TX
C(v) = 2eo — – Eo

)
Cos ——–co; –; .

8 a 9
(13)

6(0) =~0 and ~(a) = 3eo; e(x) /eo is shown plotted versus x/a in ~-ig. 1.
Also shown in Fig. 1 are the related constant and step profiles.

The normalized propagation constant of the dominant LSE

mode, a@/m, is plotted as a function of normalized frequency akc/T
(ko =ti~MOCCI) in Fig. 2. Also shown in Fig. 2 for comparison are
curves of a~/r versus akO/~ for the homogeneous y filled guide c(x)
= 2c, and for the inhomogeneously filled guide e(x) =CO (O <X <a/2)

and t(x) = ko (a/z <x <a).
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