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Fig. 2. Convergence behavior of upper and lower bound solutions.
where
s 31, t=n=j
™ 0, otherwise.

IV. RESULTS

Equation (21) was evaluated using an electronic computer. A
50-Q 0.9525-cm (3/4-in) open-circuited coaxial termination with a
solid center conductor was fabricated with center- and outer-con-
ductor diameters of 0.82723 £0.00005 and 1.90487 +0.00005 cm
(1 cm =0.393701 in), respectively. The measured value of capacitance
of this termination at 1000 Hz was 216.4 + 1.0 {F, as compared with
the calculated lower bound of 215.0 fF. [The upper bound for this
case was 217.7 {F (see 2).] The number of terms carried in the expan-
sions for H and k(p, p’) were eight and ten, respectively.

Fig. 2 is a plot of the calculated value of capacitance as a function
of the number of terms carried in the expansion of the field [see (19)]
for a ten-term expansion of the kernel [see (17)]. Also displayed is the
convergence behavior of the upper bound solution.

The error bounds provided by this method make it useable for
standards work. In other methods, error bounds must be inferred
from the convergence behavior of the solution. The minimum error
bounds determinable by this method must wait until funds become
available. In theory, of course, this limit could be reduced to zero.

Somio [3] obtained a value of 216.8 fF using a 40-term expansion
of the series derived by Whinnery et al. {4]. This value lies between
the upper and lower bounds obtained here.

V. NOMENCLATURE

Al, Az, ‘43 See Flg 1.

E Radial component of transverse electric field.

H Transverse component of magnetic field.

R Reflection coefficient.

o Amplitude of the incident wave in region 1.

hn =VEE— vt =tom; an =V vaE—k%

B! =Vk? _’Yn’2 =1ay'; an’ = \/'Ynlz —k2

k =wV ue.

Yn =we/h,—wave admittance corresponding to the nth
mode in the region Z <0.

' =we/h,’—wave admittance corresponding to the nth
mode in the region Z >0.

Yo Characteristic admittance.

¥nlp) Mode function of the #th mode in a circular waveguide.

Y nth eigenvalue corresponding to the eigenfunction
®,{p) (see I).
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Yn nth eigenvalue corresponding to the eigenfunction ¥,
(see I).

€ Dielectric constant.

p Polar coordinate.

u Permeability.

@ Polar coordinate.

@o(p) Mode function of the dominant mode in a coaxial line.
¢n(p) Mode function of the #th mode in a coaxial line.
w =2xf; f =frequency.
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On Inhomogeneously Filled Rectangular Waveguides

K. F. CASEY

Abstract—A method is given for determining the characteristic
equations and field components of the LSE and LSM modes in
rectangular waveguides filled with a dielectric which is inhomoge-
neous in one transverse dimension. The method is exact and yields
solutions for a nearly arbitrary variation in permittivity across the
waveguide. .

Propagation in waveguides which are inhomogeneously filled in
the transverse direction has been of interest for many years, because
of applications to a variety of microwave components, including
phase changers, matching transformers, and quarter-wave plates [1].
In these applications, the inhomogeneous loading is generally ac-
complished by partially filling the guide cross section with a dielectric
slab. There has also been some attention given to the more general
problem in which the permittivity variation is continuous over one
dimension of the guide cross section [2], [3]. In this short paper, we
consider this more general situation and present a method by which
the electromagnetic fields may be determined for a nearly arbitrary
variation of permittivity across the waveguide.

Consider a rectangular waveguide formed by conducting surfaces
at x=0and x=¢ and y=0 and y=b. The material filling the guide is
an inhomogeneous dielectric of permittivity e(x) and permeability uo.
Assuming a time dependence exp (jwt), the LSE modes are obtained
from

E =V X ®a, (1a)
_ 1
H=——V XV X &d. (1b)
Jora
where
Vg + B2 (x)® = 0 2)

with E2(x) =cw?ue(x). The elementary product solutions of (2) are
given by

®(x, ¥, ) = f(x) cos ?Z—y 182 @)

in which #=0, 1, 2, - - -, 8 is the propagation constant in the axial
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direction and f(x) is a solution of
B i — (Y — g =
it [pw - (5) -#]r=0 @
subject to the boundary conditions f(0) =f(e) =0.
The LSM modes are obtained from

- 1
=—-—VXVXv¥g (5a)
Jowe(x)
H=V XV (5b)
where
1 de oW
Ve — - = 4 B n)w = 0. ©)
e dz 9%
The elementary product solutions of (6) are given by
(5,9, = ¢(a) sin 2 e )
in which n=1, 2, 3, - - - and g(x) satisfies
d’g 1de dg [2 (mr 2 I
dx? c-dxdx+ #() b) ﬁ]g—O ®
subject to the boundary conditions g'(0) =g’ (a) =0.
Equations (4) and (8) may be solved via the substitutions
T
E=o- (92)
u(®) = f(x) (9b)
9(§) = 1 (w)g(x) %99
o 2 2 2
A2 g cos 2nt = (—a) [kZ(x) - (@bf) -~ 5] (9d)
n=1 T
fd 2 2 d2
uA 2D Iy cos 2ng = (_a) 2(x) ~— [e12(x) ] %e)
n=1 T dx?
yielding
d?u ad
:15—2 - ()\ +2 Z gn COS Zné) u=0 (10a)
n=1
d* 2
i F+ A —n+23 (g0 — ha) cos 2m§] 2 =0. (10b)
n=1

Equation (10) is of the form of Hill’s equation [4], [5], solutions of
which may be readily obtained if the series of coefficients D .~ _ g.
(and 2 7 ks for the LSM fields) is absolutely convergent. The
boundary conditions imposed on #(¢) and v(%) are simply

u(0) = u(xr/2) =0 (11a)
?(0) =o' (x/2) =0 (11b)

when €' (0) =¢'(a) =0. If €0 at either wall of the guide, condition
(11b) will be modified somewhat.

The boundary condition equations (11) yield the characteristic
equations for the propagation constants of the two mode types. One
may readily show, using a theorem proved by Magnus [6] concerning
the solutions to the Hill equation, that condition (11a) is equiva-
lent to

I

Sn-m — Enim
det || 8,.m —_— =0. 12
+ A — 4nt nom=1,2,3, -+ (122)
Condition (11b) is equivalent to
det |50t (gn_m—hnﬂmj&m(; Tt ym) il;l)-sgn 7 Sgn m) —o0.
m€n —p—4an n,m=0,1,2, -+
€Em€ " 0,1,2 12b)

In (12), bnm=1if n=mand 8, . =0if n#m:; e.=11f n=0and e¢.=2
if #>0; and sgn =1 if #>0 and sgn 0=0. Equations (12a) and
(12b) constitute the characteristic equations for the LSE and LSM
modes, respectively; one will note that it has not been necessary to
actually solve (4) or (8) to obtain them. Since these characteristic
equations are expressed more or less directly in terms of the Fourier
coefficients of the permittivity profile, the evaluation of the cutoff
frequencies and propagation constants is numerically straightforward.
The only condition imposed on the profile is that the series mentioned
above must be absolutely convergent.
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Fig. 1. Dielectric profiles. Solid line: ¢(x) of (13); broken line: equivalent constant
profile; dot—dashed line: step profile.
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Fig. 2. Dominant-mode propagation constant ¢8/= versus ako/= for the three
dielectric profiles shown in Fig. 1.

As a simple example, consider the calculation of the dominant
LSE-mode propagation constant in a rectangular guide filled with a
medium of permittivity

ax 1

() =2 9 ( . 3mx
€lX) = Zeo geo COS(I 9CO

§ ——
a

(13)
€(0) =€ and e(a) =3eo; e(x) /eo is shown plotted versus x/a in Fig. 1.
Also shown in Fig. 1 are the related constant and step profiles.

The normalized propagation constant of the dominant LSE
mode, ag/x, is plotted as a function of normalized frequency ako/w
(ko =w+/moer) in Fig. 2. Also shown in Fig. 2 for comparison are
curves of aB/x versus ako/w for the homogeneously filled guide e(x)

=2¢ and for the inhomogeneously filled guide e(x) =€ (0<x<a/2)
and e(x) =36 (¢/2 <x<a).
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